ROLE OF TANGENTIAL STRESSES IN THE
MEASUREMENT OF NORMAL STRESSES
BY AN INTERFERENCE METHOD

A, A, Sharts UDC 535, 854,531,787

The negligibly small influence of tangential stresses in an optically sensitive material as com-
pared to the influence of the normal stresses on the displacement of interference fringes is
shown for the use of a definite scheme,

The effects of normal stresses in fluids are investigated in [1] by using the interference of large path
differences and the property of epoxy resin to change the index of refraction under a load. The shift of the
interference fringes was an indicator of the change in normal stresses, The diagram to obtain the measuring
system for the fringes is represented in Fig, 1.

Results of investigating the influence of the temperature factor, which is always substantial for inter-
ference measurement, are elucidated in [2].

To verify the correctness of the normal stress measurements, the influence of the tangential stresses
acting on the epoxy resin layer from the fluid being subjected to a shear force and also the changing refrac-
tive index of the resin must be taken into account. And although the contribution to the shift of the inter-
ference fringes from the tangential stresses should not be substantial since the direct optical coefficient of the
stress exceeds the transverse factor by an order of magnitude for amorphous glassy materials [3], a theo-
retical estimate and an experimental confirmation are necessary,

The role of the tangential stresses can be estimated by starting from the general theory of artificial
anisotropy. Here the refractive index of the material is related to the dielectric permittivity (4] n?1 =¢;. The
whole theory of photoelasticity is constructed under the assumption of coincidence of the principal axes of the
stress tensor and the principal dielectric axes. As is known from elasticity theory [5], the coordinate axes
can always be selected so that the tensor would have diagonal form. The presence of tangential stresses
means that the tensor is not diagonal, and therefore, the problem of the influence of the tangential stresses
can be reduced to determining the influence of rotation of the dielectric ellipsoid on the change in the dielec-
tric properties along a definite direction.

According to the theory of artificial anisotropy for isotropic preloading of the material, the ellipsoid
of the wave normals has spherical form. The anisotropy occurring under a load transforms the sphere into
an ellipsoid. The differences between the new and old coefficients of the equation for the ellipsoid (sphere)
are linear functions of the stress tensor components. Taking account of requirements on the proportionality
factors [6], we obtain expressions for these differences
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Ay — —8— = QUPxx -} ﬁpyy + ﬁpzz'
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Qyy — ‘_8‘ = ﬁpz‘x + XPyy + bpzzv
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a,, — : = ﬁpxx -+ ppyu + ap,,,

Ay, = YPyz» Qe = VPzxs Qxy = VYPxy»
where o, B, v are the proportionality factors, and ¢ is the dielectric constant in the unloaded state,

In the two-dimensional case of interest to us, if the light proceeds along the z axis, the boundary condi-
tions take the form pgziz =¢ = Pyxiz = 0} Pxx|z =0 = 0 and system (1) reduces to
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Fig. 1. Diagram to obtain the measuring system of the inter-
ference fringes: 1, 2) integrating light beams; 3) wedge-shaped
glass preventing the deflection of the resin layer; 4) semitrans-
parent coating; 5) optically sensitive epoxy resin layer; 6) mir-
ror coating; 7) pressure distribution on the resin under investi-
gation.

Fig. 2. Influence of tangential stresses on the shift in the inter-
ference fringes, Al, um,
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where @ and B are the direct and transverse optical stress factors.
The initial dielectric circle of an isotropic unloaded material
adx*4al2—1=0, (3)
where a%y =a,=1/¢, goes over into an ellipse under load
Ay X% - @ 2x +a,,2% — 1 =0, 4)
and when (2) is taken into account, becomes
/ 1 \ ; 1 —
('“_ + ﬁp:z ) i + (— "1" apzz> Z2 + u)_ PrxZX —= 1= O (5)
€ y ‘e | ) 2

This is the equation of an ellipse rotated through a certain angle ¢ relative to the coordinate axes, This angle
of rotation governs the influence of the tangential stresses on the dielectric properties of the material along
the z axis.

If we use the notation 1/ + apzz = af and 1/e +8p,; = ai, then (5) becomes

X2 22 " 2 (@ —B)
a’ 4a% a2
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1
PrxZX — B a =0, (6)
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which may also be expressed in terms of the vibration equations
X =acos(t--8), z=aycos(t+ 8,

if we use the notation (@—w)/4asa,pzx = cos6 and 1/afa} = sin’6. Here 6 denotes the difference in the initial
phases (51 ‘"62).

To go over to the intrinsic coordinates (¢, n), where the ellipse is described by the equations

E=acos(t--08) 1 =bcos'(r+6u—;— —g—)

(@ and b are the principal semiaxes of the ellipse), the coordinate axes must be rotated through the angle
¥ defined in terms of é, ay,and a, by means of the formula [6]

N 2a,a, cos &
tan 2117 = —612 2
1 2
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TABLE 1. Changes in the Location of the Interference Fringes Asa
Function of the Applied Moment of the Forces (in fractions of the
"critical" moment)

M
N ! ’
0 0.6 1.3 2.5 ’ 6.5 l 13 25
20 1,657 1,655 1,656 1,662 1,663 1,655 1,657
40 3,338 3,335 3,338 3,340 3,338 3,339 3,331
60 5,039 5,035 5,041 5,044 5,036 5,040 5,033
80 6,721 6,719 6,719 6,716 6,720 6.715 6,718
100 8,385 8,379 8,383 8.381 8,381 8,378 8,380
120 10,095 10,090 10,094 10,089 10,090 10,086 10,084
140 11,791 11,783 11,789 11,787 1,792 11,790 11,792

160 13,474 13,475 13,478 13,484 13,480 13,479 13,478
180 15,169 15,160 15,164 15,166 15,164 15,170 15,163
200 16,865 16,867 16,870 16,873 16,874 16,874 16,873
220 18,571 18,569 |8 572 18,573 18,574 18,574 18,578
240 20,263 20,265 20,264 20,262 20,261 20,271 20,271
260 21,973 21,969 21,966 21,970 21,971 21,977 21,979
280 23,683 23,685 | 23,681 23,680 923,675 23,687 23,684
300 25,398 25,395 25,39 25,395 25,398 25,403 25,404
320 27,098 27,098 27,102 97096 27,098 | 27,105 27,109
340 28,811 28,805 28,812 28,802 28,808 28,814 28,815
350" 29,666 29,665 29,669 29, 660 29,667 29,672 29,680

If the values of cosd, af and a} are substituted into this formula, we obtain the equality tan 2 = (1/2)p,,/
Pzz from which there follows that for equal tangential and normal stresses, the contribution of the tangential
stresses to a change in the dielectric permittivity is about 3% of the contribution from the normal stress since
the projection of the ellipse semiaxis changes so much for a rotation of =13°,

The computation performed was experimentally verified. For this the resin layer sensitive to the
stresses was subjected for an invariant normal load to a tangential force analogous to that which the moment
of the viscous forces from the fluid in a torsion flow in [1] exerts on this layer.

The total moment of the viscous forces acting when the tangential stresses reach the magnitude of the
normal stresses ("critical® moment) was determined by the formula

R 2n

Ré
0 == f Sv T rdrde = ﬂ;;—.
70

where R is the radius of a disk; h, a gap; n, viscosity; and w, angular velocity. Substitution of the numerical
values from experiment [1] yields My = 3 10* dyne - cm.

The location of the interference fringes (in mm) on the length of the measuring disk radius is repre-
sented in the table for different torques. Here N is the fringe number and M is the moment of the applied
forces in fractions of the "critical” moment of the viscous forces M,

The results of processing the experimental results are represented in Fig.2. The moment of the forces
M is plotted along the abscissa axis here, and the maximum fixed mutual shift in the interference fringes Al
along the ordinate axis.

1t follows from a comparison between these data and the results of a shift in the interference fringes
under the influence of normal stresses [1] that normal stresses 20-30 times less than the tangential are re~
quired to achieve the same shifts.

Therefore, the experiment confirms the computation and demonstrates the negligible contribution of
tangential stresses in the shift of the interference fringes as compared to the normal stress under conditions
of their equality.
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NONSTEADY FLOWS OF VISCOPLASTIC FLUIDS AT
THE INITIAL SECTIONS OF PLANE CHANNELS

Z. P. Shul'man and E. A. Zal'tsgendler UDC 532,135

The problem is formulated and the method of solving infernal problems of rheodynamics of
nonsteady flows of viscoplastic fluids is proposed,

Nonsteady motions of viscoplastic media are of considerable interest in connection with investigations
of technological processes occurring under dynamic loading. A number of articles are devoted to an analysis
of the rheodynamics of nonsteady flows on spatially steady sections, a review of which is given in [1]. The
initial sections for steady flow of viscoplastic fluids were considered in [2-5]. Investigations of nonsteady
flows at initial sections of channels have so far not been carried out,

We consider the flow of a fluid in a plane channel (Fig.1). The velocity of the fluid at the inlet is con-
stant over the cross section and equal to V. From physical considerations the entire flow region can be divided
into two regions: a zone of shearing flow, adjoining the wall of the channel (6 < y = h), and a "quasisolid" core,
where the velocity is constant (0 =y =8), We should note that the velocity of the quasisolid core U{x) varies
along the channel axis. Under such conditions we can use the modified model of a viscoplastic fluid, which
for 7 = 1, exhibits creep, i.e., slow flow with high viscosity. Then, the nonuniqueness of the velocity field
in the transverse direction can be neglected; in this case, however, the model admits the dependence of U on
the longitudinal coordinate. \‘

The equations of motion in the boundary-layer approximation are

ou ou ou dp u 1)
+u v = ,
p( ot 0x + Oy ) Oy T dy?
Ou , v 0 S<y<h
ox = ay (2)
oUu ou op T
—+U = - — L 0<Ly<S
p( at ax ) o 5 OSYSO (3)

(an investigation was carried out for the linear model of a viscoplastic Shvedov~Bingham medium),

Equation (3) for a quasisolid core contributes the term 7y/5. It indicates that the stresses onthe boundary
of the quasisolid core are equal to 7y, In {2] for the steady-staté problem in the zone of quasisolid motion,
the Shiller approximation was assumed to be valid:
ou 1 dp
dx . p dx “

In our opinion, neglecting the term 7,/6 can lead to sizable errors in the solution,

Let the medium be at rest for t = 0, and for t > 0 let there be a flow with a constant flow rate. The ini-
tial and boundary conditions of the problem are the following:
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